AES算法

发布于 2023-02-20  364 次阅读


AES算法(高级加密标准)

AES的基本结构

​ AES为分组密码,分组密码也就是把明文分成一组一组的,每组长度相等,每次加密一组数据,直到加密完整个明文。在AES标准规范中,分组长度只能是128位,也就是说,每个分组为16个字节(每个字节8位)。密钥的长度可以使用128位、192位或256位。密钥的长度不同,推荐加密轮数也不同,如下表所示:

AES 密钥长度(32位比特字) 分组长度(32位比特字) 加密轮数
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

​ 这里实现的是AES-128,也就是密钥的长度为128位,加密轮数为10轮。 上面说到,AES的加密公式为C = E(K,P),在加密函数E中,会执行一个轮函数,并且执行10次这个轮函数,这个轮函数的前9次执行的操作是一样的,只有第10次有所不同。也就是说,一个明文分组会被加密10轮。AES的核心就是实现一轮中的所有操作。

​ AES的处理单位是字节,128位的输入明文分组P和输入密钥K都被分成16个字节,分别记为P = P0 P1 … P15 和 K = K0 K1 … K15。如,明文分组为P = abcdefghijklmnop,其中的字符a对应P0,p对应P15。一般地,明文分组用字节为单位的正方形矩阵描述,称为状态矩阵。在算法的每一轮中,状态矩阵的内容不断发生变化,最后的结果作为密文输出。该矩阵中字节的排列顺序为从上到下、从左至右依次排列,如下图所示:

image-20230220105248397

现在假设明文分组P为"abcdefghijklmnop",则对应上面生成的状态矩阵图如下:

image-20230220105352380

上图中,0x61为字符a的十六进制表示。

​ 类似地,128位密钥也是用字节为单位的矩阵表示,矩阵的每一列被称为1个32位比特字。通过密钥编排函数该密钥矩阵被扩展成一个44个字组成的序列W[0],W[1], … ,W[43],该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥加(下面介绍);后面40个字分为10组,每组4个字(128比特)分别用于10轮加密运算中的轮密钥加,如下图所示:

image-20230220105523558

上图中,设K = “abcdefghijklmnop”,则K0 = a, K15 = p, W[0] = K0 K1 K2 K3 = “abcd”。

​ AES的整体结构如下图所示,其中的W[0,3]是指W[0]、W[1]、W[2]和W[3]串联组成的128位密钥。加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。另外,在第一轮迭代之前,先将明文和原始密钥进行一次异或加密操作。

image-20230220110222521

​ 上图也展示了AES解密过程,解密过程仍为10轮,每一轮的操作是加密操作的逆操作。由于AES的4个轮操作都是可逆的,因此,解密操作的一轮就是顺序执行逆行移位、逆字节代换、轮密钥加和逆列混合。同加密操作类似,最后一轮不执行逆列混合,在第1轮解密之前,要执行1次密钥加操作。

​ 下面分别介绍AES中一轮的4个操作阶段,这4分操作阶段使输入位得到充分的混淆。

字节代换

字节代换操作

AES的字节代换其实就是一个简单的查表操作。AES定义了一个S盒和一个逆S盒。

AES的S盒:

行/列 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5 0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76
1 0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0 0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0
2 0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc 0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15
3 0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a 0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75
4 0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0 0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84
5 0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b 0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf
6 0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85 0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8
7 0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5 0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2
8 0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17 0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
9 0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88 0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb
A 0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c 0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79
B 0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9 0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08
C 0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6 0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a
D 0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e 0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e
E 0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94 0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf
F 0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68 0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16

​ 状态矩阵中的元素按照下面的方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,取出S盒或者逆S盒中对应的行的元素作为输出。例如,加密时,输出的字节S1为0x12,则查S盒的第0x01行和0x02列,得到值0xc9,然后替换S1原有的0x12为0xc9。状态矩阵经字节代换后的图如下:

image-20230220110915839

字节代换逆操作

逆字节代换也就是查逆S盒来变换,逆S盒如下:

行/列 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0x52 0x09 0x6a 0xd5 0x30 0x36 0xa5 0x38 0xbf 0x40 0xa3 0x9e 0x81 0xf3 0xd7 0xfb
1 0x7c 0xe3 0x39 0x82 0x9b 0x2f 0xff 0x87 0x34 0x8e 0x43 0x44 0xc4 0xde 0xe9 0xcb
2 0x54 0x7b 0x94 0x32 0xa6 0xc2 0x23 0x3d 0xee 0x4c 0x95 0x0b 0x42 0xfa 0xc3 0x4e
3 0x08 0x2e 0xa1 0x66 0x28 0xd9 0x24 0xb2 0x76 0x5b 0xa2 0x49 0x6d 0x8b 0xd1 0x25
4 0x72 0xf8 0xf6 0x64 0x86 0x68 0x98 0x16 0xd4 0xa4 0x5c 0xcc 0x5d 0x65 0xb6 0x92
5 0x6c 0x70 0x48 0x50 0xfd 0xed 0xb9 0xda 0x5e 0x15 0x46 0x57 0xa7 0x8d 0x9d 0x84
6 0x90 0xd8 0xab 0x00 0x8c 0xbc 0xd3 0x0a 0xf7 0xe4 0x58 0x05 0xb8 0xb3 0x45 0x06
7 0xd0 0x2c 0x1e 0x8f 0xca 0x3f 0x0f 0x02 0xc1 0xaf 0xbd 0x03 0x01 0x13 0x8a 0x6b
8 0x3a 0x91 0x11 0x41 0x4f 0x67 0xdc 0xea 0x97 0xf2 0xcf 0xce 0xf0 0xb4 0xe6 0x73
9 0x96 0xac 0x74 0x22 0xe7 0xad 0x35 0x85 0xe2 0xf9 0x37 0xe8 0x1c 0x75 0xdf 0x6e
A 0x47 0xf1 0x1a 0x71 0x1d 0x29 0xc5 0x89 0x6f 0xb7 0x62 0x0e 0xaa 0x18 0xbe 0x1b
B 0xfc 0x56 0x3e 0x4b 0xc6 0xd2 0x79 0x20 0x9a 0xdb 0xc0 0xfe 0x78 0xcd 0x5a 0xf4
C 0x1f 0xdd 0xa8 0x33 0x88 0x07 0xc7 0x31 0xb1 0x12 0x10 0x59 0x27 0x80 0xec 0x5f
D 0x60 0x51 0x7f 0xa9 0x19 0xb5 0x4a 0x0d 0x2d 0xe5 0x7a 0x9f 0x93 0xc9 0x9c 0xef
E 0xa0 0xe0 0x3b 0x4d 0xae 0x2a 0xf5 0xb0 0xc8 0xeb 0xbb 0x3c 0x83 0x53 0x99 0x61
F 0x17 0x2b 0x04 0x7e 0xba 0x77 0xd6 0x26 0xe1 0x69 0x14 0x63 0x55 0x21 0x0c 0x7d

行位移

行位移操作

​ 行移位是一个简单的左循环移位操作。当密钥长度为128比特时,状态矩阵的第0行左移0字节,第1行左移1字节,第2行左移2字节,第3行左移3字节,如下图所示:

image-20230220111225625

行位移的逆变换

​ 行移位的逆变换是将状态矩阵中的每一行执行相反的移位操作(右循环移位),例如AES-128中,状态矩阵的第0行右移0字节,第1行右移1字节,第2行右移2字节,第3行右移3字节。

列混合

列混合操作

列混合变换是通过矩阵相乘来实现的,经行移位后的状态矩阵与固定的矩阵相乘,得到混淆后的状态矩阵,如下图的公式所示:

image-20230220111605613

状态矩阵中的第j列(0 ≤j≤3)的列混合可以表示为下图所示:

image-20230220112010312

其中,矩阵元素的乘法和加法都是定义在基于GF(2^8)上的二元运算,并不是通常意义上的乘法和加法。

列混合逆运算

逆向列混合变换可由下图的矩阵乘法定义:

image-20230220131046252

可以验证,逆变换矩阵同正变换矩阵的乘积恰好为单位矩阵

轮密钥加

​ 轮密钥加是将128位轮密钥Ki同状态矩阵中的数据进行逐位异或操作,如下图所示。其中,密钥Ki中每个字W[4i],W[4i+1],W[4i+2],W[4i+3]为32位比特字,包含4个字节,他们的生成算法下面在下面介绍。轮密钥加过程可以看成是字逐位异或的结果,也可以看成字节级别或者位级别的操作。也就是说,可以看成S0 S1 S2 S3 组成的32位字与W[4i]的异或运算。

image-20230220133539699

轮密钥加的逆运算同正向的轮密钥加运算完全一致,这是因为异或的逆操作是其自身。轮密钥加非常简单,但却能够影响S数组中的每一位

密钥扩展

AES首先将初始密钥输入到一个4*4的状态矩阵中,如下图所示

image-20230220133623787

这个4*4矩阵的每一列的4个字节组成一个字,矩阵4列的4个字依次命名为W[0]、W[1]、W[2]和W[3],它们构成一个以字为单位的数组W。例如,设密钥K为"abcdefghijklmnop",则K0 = ‘a’,K1 = ‘b’, K2 = ‘c’,K3 = ‘d’,W[0] = “abcd”

接着,对W数组扩充40个新列,构成总共44列的扩展密钥数组。新列以如下的递归方式产生:

  • 如果i不是4的倍数,那么第i列由如下等式确定:

​ W[i]=W[i-4]⨁W[i-1]

  • 如果i是4的倍数,那么第i列由如下等式确定:

​ W[i]=W[i-4]⨁T(W[i-1]); 其中,T是一个有点复杂的函数

函数T由3部分组成:字循环、字节代换和轮常量异或,这3部分的作用分别如下

  • 字循环:将1个字中的4个字节循环左移1个字节。即将输入字[b0, b1, b2, b3]变换成[b1,b2,b3,b0]。
  • 字节代换:对字循环的结果使用S盒进行字节代换。
  • 轮常量异或:将前两步的结果同轮常量Rcon[j]进行异或,其中j表示轮数。

    轮常量Rcon[j]是一个字,其值见下表。

j 1 2 3 4 5
Rcon[j] 01 00 00 00 02 00 00 00 04 00 00 00 08 00 00 00 10 00 00 00
j 6 7 8 9 10
Rcon[j] 20 00 00 00 40 00 00 00 80 00 00 00 1B 00 00 00 36 00 00 00

下面举个例子:

设初始的128位密钥为: 3C A1 0B 21 57 F0 19 16 90 2E 13 80 AC C1 07 BD
那么4个初始值为:
W[0] = 3C A1 0B 21
W[1] = 57 F0 19 16
W[2] = 90 2E 13 80
W[3] = AC C1 07 BD

下面求扩展的第1轮的子密钥(W[4],W[5],W[6],W[7])。
由于4是4的倍数,所以:
W[4] = W[0] ⨁ T(W[3])

T(W[3])的计算步骤如下:

  1. 循环地将W[3]的元素移位:AC C1 07 BD变成C1 07 BD AC;
  2. 将 C1 07 BD AC 作为S盒的输入,输出为78 C5 7A 91;
  3. 将78 C5 7A 91与第一轮轮常量Rcon[1]进行异或运算,将得到79 C5 7A 91,因此,T(W[3])=79 C5 7A 91,故
    W[4] = 3C A1 0B 21 ⨁ 79 C5 7A 91 = 45 64 71 B0
    其余的3个子密钥段的计算如下:
    W[5] = W[1] ⨁ W[4] = 57 F0 19 16 ⨁ 45 64 71 B0 = 12 94 68 A6
    W[6] = W[2] ⨁ W[5] =90 2E 13 80 ⨁ 12 94 68 A6 = 82 BA 7B 26
    W[7] = W[3] ⨁ W[6] = AC C1 07 BD ⨁ 82 BA 7B 26 = 2E 7B 7C 9B
    所以,第一轮的密钥为 45 64 71 B0 12 94 68 A6 82 BA 7B 26 2E 7B 7C 9B。
Daniel_WRF
最后更新于 2023-09-22